1784 reflections	Atomic scattering factors
235 parameters	from International Tables
Idealized H-atom positions	for X-ray Crystallography
riding on host atom	(1992, Vol. C, Tables
$w = 1/[\sigma^2(F) + 0.0021F^2]$	6.1.1.4 and 6.1.1.5)

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

 $U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	х	у	Ζ	U_{eq}
Col	0.0278(1)	0.0560(1)	0.5630(1)	0.0035 (1)
Brl	0.1071 (1)	-0.0715(1)	0.4654 (1)	0.0068 (1)
Br2	0.1679(1)	0.1423 (1)	0.6486 (1)	0.0057(1)
Si1	-0.1622(2)	0.0314 (2)	0.7067 (2)	0.0037 (1)
N1	-0.1699 (7)	-0.1909 (6)	0.5850 (5)	0.0044 (3)
N2	-0.0694 (6)	0.1608 (6)	0.4892 (5)	0.0042 (3)
01	-0.0831 (5)	-0.0170 (5)	0.6300 (4)	0.0041 (2)
Cl	-0.0931 (10)	0.1145 (9)	0.4018 (7)	0.0066 (5)
C2	-0.0108 (10)	0.2606 (8)	0.4772 (8)	0.0064 (4)
C3	-0.1850 (8)	0.1777 (8)	0.5319 (7)	0.0045 (4)
C4	-0.1799 (8)	0.2322 (7)	0.6178 (6)	0.0037 (3)
C5	-0.1951 (9)	0.3406 (8)	0.6208 (8)	0.0053 (4)
C6	-0.1924 (9)	0.3932 (9)	0.6968 (9)	0.0059 (4)
C 7	-0.1732 (10)	0.3444 (9)	0.7761 (9)	0.0063 (5)
C8	-0.1616 (9)	0.2362 (8)	0.7752 (7)	0.0049 (4)
C9	-0.1668 (8)	0.1785 (7)	0.6983 (7)	0.0043 (3)
C10	-0.3120 (8)	-0.0160 (8)	0.6881 (7)	0.0041 (3)
C11	-0.4029 (9)	0.0520 (9)	0.6995 (7)	0.0054 (4)
C12	-0.5150 (9)	0.0195 (12)	0.6878 (9)	0.0078 (6)
C13	-0.5378 (10)	-0.0779 (12)	0.6642 (10)	0.0085 (6)
C14	-0.4502 (9)	-0.1498 (11)	0.6515 (9)	0.0068 (5)
C15	-0.3384 (8)	-0.1213 (8)	0.6662 (7)	0.0047 (4)
C16	-0.2529 (9)	-0.2049 (8)	0.6591 (7)	0.0048 (4)
C17	-0.0906 (10)	-0.2809 (8)	0.5838 (9)	0.0070 (5)
C18	-0.2241 (10)	-0.1801 (9)	0.4981 (7)	0.0061 (4)
C19	-0.1138 (9)	-0.0099 (8)	0.8172 (6)	0.0053 (4)

Table 2. Selected geometric parameters (Å, °)

10010 -1000	00000 00000	
Col-Brl	2.406 (2)	C3—C4
Co1—Br2	2.385 (2)	C4C5
Co1—N2	2.100 (8)	C4—C9
Co1-01	1.911 (6)	C5—C6
Si1—01	1.623 (7)	C6C7
Si1-C9	1.898 (10)	C7—C8
Si1-C10	1.898 (10)	C8—C9
Si1-C19	1.856 (10)	C10-C11
N1-C16	1.507 (14)	C10-C15
N1-C17	1.491 (14)	C11—C12
N1-C18	1.479 (14)	C12-C13
N2-C1	1.485 (14)	C13-C14
N2-C2	1.472 (14)	C14-C15
N2—C3	1.531 (12)	C15-C16
Br1-Co1-Br2	112.6(1)	N2C3C4
Br1-Co1-N2	108.7 (2)	C3-C4-C5
Br2—Co1—N2	112.1 (2)	C3—C4—C9
Br1-Co1-O1	105.3 (2)	C5C4C9
Br2-Co1-O1	114.5 (2)	C4—C5—C6
N2-Co1-O1	103.0 (3)	C5-C6-C7
O1—Si1—C9	110.5 (4)	C6—C7—C8
.'-Sil-Cl0	108.0 (4)	C7—C8—C9
CJSil-C10	106.5 (4)	Si1C9C4
O1-Si1-C19	111.4 (4)	Si1-C9-C8
C9-Si1-C19	110.9 (5)	C4C8
C10-Si1-C19	109.4 (5)	Sil—C10—C11
C16—N1—C17	109.1 (8)	Si1—C10—C15
C16—N1—C18	113.5 (8)	C11—C10—C15
C17-N1-C18	109.6 (8)	C10-C11-C12
Co1-N2-C1	109.0 (6)	C11—C12—C13
Co1-N2-C2	111.6 (6)	C12C13C14
C1—N2—C2	109.1 (8)	C13-C14-C15
Co1—N2—C3	110.8 (6)	C10-C15-C14
C1-N2-C3	105.6 (8)	C10-C15-C16
C2—N2—C3	110.5 (8)	C14-C15-C16
Col-Ol-Sil	126.4 (4)	N1-C16-C15

 \bigcirc 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

Data collection: P3/P4-PC (Siemens, 1991). Cell refinement: P3/P4-PC. Data reduction: XDISK in SHELXTL/PC (Sheldrick, 1991). Program(s) used to solve structure: XS in SHELXTL/PC. Program(s) used to refine structure: XLS in SHELXTL/PC. Molecular graphics: XP in SHELXTL/PC. Software used to prepare material for publication: XPUBL in SHELXTL/PC.

The authors would like to thank Fundación Andes for the purchase of the single-crystal diffractometer currently operating at the Universidad de Chile.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, least-squares-planes data and complete geometry have been deposited with the IUCr (Reference: BK1030). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

1.486 (14)

1.407 (13) 1.416 (14)

1.34 (2) 1.38 (2) 1.40 (2) 1.39 (2)

1.43 (2)

1.40 (2) 1.33 (2) 1.40 (2)

1.39 (2)

1.482 (14) 113.9 (8)

119.4 (9) 122.5 (9) 118.0 (9)

117.4 (11)

122.4 (10) 123.2 (8) 118.4 (8)

118.4 (9)

120.0 (8) 123.0 (7) 117.0 (9)

121.8 (11) 120.4 (12) 120.6 (12)

120.5 (12) 119.7 (10)

123.7 (9)

116.6 (10)

114.4 (8)

Manzur, J. & Musker, W. K. (1973). Inorg. Nucl. Chem. Lett. 9, 841-843.

Sheldrick, G. M. (1991). SHELXTL/PC. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1991). P3/P4-PC Diffractometer Program. Version 4.27. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1995). C51, 604-606

The Dimer $[PtCl_2{P(C_2H_5)_3}{(C_6H_5)-SOCH_2}]_2$

1.39 (2) REGINA HELENA P. FRANCISCO, 1.398 (14) MURINI TERRAL D. CUMPUNT

Maria Teresa P. Gambardella and

Ana Maria G. D. Rodrigues

DQFM, IFQSC, Universidade de São Paulo, CP 369, 13560.020 São Carlos, SP, Brazil

Gerimário F. de Souza

DQ, ICC, Universidade de Brasilia,

121.7 (11) 70910.900 Brasilia, DF, Brazil

CARLOS ALBERTO L. FILGUEIRAS

DQ, ICEx, Universidade de Minas Gerais, 30270.910 Belo Horizonte, MG, Brazil

(Received 20 April 1994; accepted 4 August 1994)

Abstract

The structure determination of μ -[meso-1,2-bis(phenylsulfinyl)ethane-S:S']bis[cis-dichloro(triethylphosphine)platinum(II)] revealed the occurrence of discrete dimers, formed by two platinum complexes related by an inversion centre and connected by the (--CH₂---CH₂---) group attached to the S atoms, with the centre of the C-----C bond [C13----C13' = 1.54(1)Å] located at the origin. The metal has a *cis*-square-planar coordination environment, and the geometries about the P and S atoms are tetrahedral.

Comment

Diastereoisomeric *meso* and *rac* forms of 1,2bis(phenylsulfinyl)ethane can be separated readily. The *rac* isomer has a melting point (394–396 K) lower than the *meso* isomer (440–442 K), although the solid-state IR spectra are very similar (Filgueiras, Celso, Marques & Johnson, 1982). The ¹H NMR spectra allow the identification of the diastereoisomers. The *meso* isomer has equivalent —CH₂—CH₂— protons and shows only a single resonance at 2.88 p.p.m., while the —CH₂—CH₂— protons in the *rac* compound are non-equivalent, displaying a complex multiplet centred at about the same frequency (Cattalini, Michelon, Marangoni & Pelizzi, 1979).

The ¹H NMR spectrum of the title complex, (I), in CDCl₃ showed two virtual quartets occurring at 4.36 and 4.67 p.p.m. for the $-CH_2-CH_2-$ group, due to the two magnetically non-equivalent methylene protons at each C atom. However, the ³¹P and ¹⁹⁵Pt NMR spectra indicated magnetically equivalent phosphorus and platinum nuclei.

The meso-(PhSOCH₂)₂ ligand can bind to different metal centres via either the O or S atoms. This ligand reacts with a soft Lewis acid, namely K₂[PtCl₄], yielding the corresponding neutral platinum(II) complex, cis-[PtCl₂{meso-(PhSOCH₂)₂}], in which the disulfoxide acts as a bidentate S,S-chelating ligand (Cattalini, Michelon, Marangoni & Pelizzi, 1979). On the other hand, the hard acid, Ph₃SnCl, forms a Ph₃SnCl.-(PhSOCH₂) complex (Filgueiras, Holland, Johnson & Raithby, 1982) which utilizes the O atoms.

The stereochemistry of some square-planar platinum complexes is dependent on electronic and/or steric forces (Meek, Nicpon & Meek, 1970). The *cis* arrangement of P—Pt—S [93.4 (1)°] in the title compound can be rationalized by the necessity to reduce the competition between the P and S atoms for the *d* orbitals of the metal.

Fig. 1. An ORTEP (Johnson, 1965) view of the title dimer with numbering for the independent unit.

Experimental

To obtain the title compound, $[PtCl(\mu-Cl)(PEt_3)]_2$ (0.10 g, 0.13 mmol) was dissolved in a small amount of hot C₆H₆ and treated with *meso*-(PhSOCH₂)₂ (0.26 g, 0.13 mmol) dissolved in the same solvent. The mixture was refluxed for 0.5 h and the product was filtered. White air-stable crystals (m.p. 448–449 K) were obtained by recrystallization from C₆H₆/CH₂Cl₂ (1:4). Elemental chemical analysis indicated 29.82% C and 4.20% H.

Crystal data

$Pt_2Cl_4(C_{14}H_{14}O_2S_2)$ -	Mo $K\alpha$ radiation
$(C_6H_{15}P)_2$]	$\lambda = 0.71069 \text{ Å}$
$M_r = 1046.7$	Cell parameters from 21
Orthorhombic	reflections
Pbca	$\theta = 9 - 13^{\circ}$
a = 12.835 (3) Å	$\mu = 8.3277 \text{ mm}^{-1}$
b = 17.596 (3) Å	T = 298 K
c = 16.015 (3) Å	Block
$V = 3617 (1) \text{ Å}^3$	$0.4 \times 0.3 \times 0.2$ mm
Z = 4	White
$D_x = 1.9222 \text{ Mg m}^{-3}$	

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: refined from ΔF (*DIFABS*; Walker & Stuart, 1983) $T_{min} = 0.05$, $T_{max} = 0.19$

3900 measured reflections 2794 independent reflections 1889 observed reflections $[F \ge 6\sigma(F)]$ $R_{int} = 0.0347$ $\theta_{max} = 25^{\circ}$ $h = 0 \rightarrow 15$ $k = 0 \rightarrow 20$ $l = 0 \rightarrow 18$ 20 standard reflections frequency: 60 min intensity decay: 0.9%

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.01$
R = 0.0383	$\Delta \rho_{\rm max} = 1.57 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.0428	$\Delta \rho_{\rm min} = -1.85 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.89	Extinction correction: none
1906 reflections	Atomic scattering factors
181 parameters	from International Tables
Only coordinates of H atoms	for X-ray Crystallography
refined	(1974, Vol. IV)
$w = 1/[\sigma^2(F)]$	
$+ 0.00637F^2$]	

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²)

 $B_{\text{eq}} = (8\pi^2/3)\sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_j \cdot \mathbf{a}_j \text{ (Hamilton, 1959).}$

	x	у	Ζ	$B_{\rm eq}$
Pt	0.20831 (3)	0.11835 (2)	0.03934 (3)	2.37 (2)
S	0.0516 (2)	0.0878 (2)	0.0861 (2)	2.47 (8)
Р	0.1852 (3)	0.2443 (2)	0.0636 (2)	3.0(1)
C11	0.3654 (3)	0.1468 (2)	-0.0225(2)	4.4(1)
Cl2	0.2508 (3)	-0.0104 (2)	0.0186 (2)	3.9(1)
0	-0.0316 (7)	0.1434 (5)	0.0686 (5)	3.6 (3)
Cl	0.054 (1)	0.0646 (6)	0.1944 (6)	2.9 (4)
C2	-0.035 (1)	0.0784 (7)	0.2388 (8)	4.2 (5)
C3	-0.036 (2)	0.0577 (8)	0.3240 (8)	4.9 (6)
C4	0.049(1)	0.0245 (8)	0.3597 (8)	4.7 (5)
C5	0.135(1)	0.0105 (9)	0.3115 (9)	5.5 (6)
C6	0.140(1)	0.0304 (9)	0.2298 (9)	5.0 (6)
C7	0.100(1)	0.2662 (6)	0.1508 (9)	4.7 (5)
C8	0.096 (2)	0.3486 (7)	0.179 (1)	6.1 (7)
C9	0.306(1)	0.2938 (8)	0.089(1)	4.5 (5)
C10	0.361 (2)	0.266 (1)	0.165(1)	9.(1)
C11	0.129 (2)	0.2940 (8)	-0.0239 (9)	5.3 (6)
C12	0.179 (2)	0.282(1)	-0.106 (1)	7.4 (8)
C13	0.008(1)	-0.0024(6)	0.0475 (6)	2.5 (3)

Table 2. Selected geometric parameters (Å, °)

Pt—S	2.212 (3)	S-C1	1.78 (1)
Pt—P	2.270 (3)	S-C13	1.79(1)
Pt—Cl1	2.302 (3)	Р—С7	1.82(1)
Pt—Cl2	2.353 (3)	Р—С9	1.82(1)
S—O	1.475 (9)	PC11	1.80(1)
S—Pt—P	93.4 (1)	PtSO	115.6 (4)
S—Pt—Cl2	91.4 (1)	Pt-S-C13	112.4 (4)
Cl1—Pt—Cl2	86.9 (1)	Pt-S-C1	111.7 (4)
Cl1-Pt-P	88.6(1)	0-S-C1	110.4 (5)
S—Pt—CI1	174.3 (3)	0-S-C13	107.2 (5)
PPtCl2	173.9 (1)	C1—S—C13	97.9 (5)
PtPC7	114.7 (4)	С7—Р—С9	103.8 (7)
Pt-P-C9	113.2 (5)	C7—P—C11	104.7 (7)
Pt—P—C11	113.1 (5)	C9PC11	106.4 (7)

The structure was solved by analysis of the Patterson map (*SHELXS86*; Sheldrick, 1985) followed by difference Fourier syntheses and refinement using *SHELX76* (Sheldrick, 1976).

This work was sponsored by grants from FAPESP, CNPq, FINEP and CAPES, which are hereby gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1113). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Cattalini, L., Michelon, G., Marangoni, G. & Pelizzi, G. (1979). J. Chem. Soc. Dalton Trans. pp. 96-101.
- Filgueiras, C. A. L., Celso, C., Marques, E. V. & Johnson, B. F. G. (1982). Inorg. Chim. Acta, 59, 71-74.
- Filgueiras, C. A. L., Holland, P. R., Johnson, B. F. G. & Raithby, P. R. (1982). Acta Cryst. B38, 2684–2686.
- Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Meek, D. W., Nicpon, P. E. & Meek, V. I. (1970). J. Am. Chem. Soc. 92, 5351–5359.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1995). C51, 606-608

Redetermination of Bis(N,N-diethyldithiocarbamato)nickel(II)

R. Selvaraju and K. Panchanatheswaran*

Department of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India

A. THIRUVALLUVAR AND V. PARTHASARATHI

Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India

(Received 6 January 1994; accepted 8 September 1994)

Abstract

The crystal structure of the α form of bis(*N*,*N*-diethyldithiocarbamato-*S*,*S'*)nickel(II), [Ni(C₅H₁₀NS₂)₂], has been redetermined at 290 K by single-crystal Xray methods. The Ni atom assumes a four-coordinate square-planar geometry with two isobidentate dithiocarbamate groups. The results confirm those of a previous study [Bonamico, Dessy, Mariani, Vaciago & Zambonelli (1965). *Acta Cryst.* **19**, 619–627] but are more precise.

Comment

The structure and chemistry of nickel(II) dithiocarbamates continue to be of interest. Three forms of bis(N, N-diethyldithiocarbamato)nickel(II) have been reported (Bonamico, Dessy, Mariani, Vaciago & Zambonelli, 1965; Khan, Nazrul, Fackler, Murray & Heinrich, 1987). The structure of the α form, (I), was determined (Bonamico *et al.*, 1965) by photographic methods using Cu $K\alpha$ radiation to a final R factor of only 0.10.